希望!Nature:科学家成功让失明小鼠“重见天日”
2018/08/20
失明,一直是再生医学领域想攻克的难题之一,然后收效却有限。近日,科学界有了新的进展:来自于西奈山医学院的科学家们找到了关键细胞,并成功逆转了小鼠的先天性失明。这一发现推动了对致盲疾病的再生治疗,包括年龄相关性黄斑变性和色素性视网膜炎。


8月15日,《Nature》期刊发表了这一篇题为“Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas”的文章。这是科学家们首次证实Müller胶质细胞(Müller glia)能够经过重编程生成视杆细胞,后者负责让我们能够在弱光下看到东西,同时协助视锥细胞感受色觉和亮光。

研究发现,这些新生成的光感受细胞能够检测到入射光线,并且与眼睛中其他的细胞互作将视觉信号传递给大脑,最终有望逆转某些遗传眼疾和损伤。


Müller胶质细胞

视杆细胞、视锥细胞是位于眼睛视网膜中的感光细胞。其中,视杆细胞在光线较暗时活动,有较高的光敏度,但不能作精细的空间分辨,且不参与色觉。在较明亮的环境中以视锥细胞为主,它能提供色觉以及精细视觉。一旦这些细胞或者视网膜神经节细胞受损,容易造成视觉障碍,甚至于导致失明。对于哺乳动物而言,这类细胞并不能自主再生——类似于大多数神经元,一旦发育成熟,它们便不会分裂。

Müller胶质细胞是视网膜中最常见的非神经性细胞。让科学家们着迷的是,鱼类和两栖类动物眼睛中的Müller胶质细胞能够分裂、分化成新的神经元细胞,从而取代受损或者丢失的细胞。但是,包括人在内的哺乳类动物眼睛中的Müller胶质细胞负责支持、滋养周围的细胞,并不会在眼睛受损后再生出神经元,即便有,也是很少的新细胞。

最新研究

来自于美国西奈山医学院的神经学家Bo Chen和团队希望在不损伤眼睛的前提下再生感光细胞。“我们试图唤醒眼睛中的自我修复机制。相比于‘将干细胞插入视网膜以便再生出新的神经元’,我更期待侵入性、破坏性小的方法。” Bo Chen解释道。

他们成功找到了“两步法”的对策:首先,通过注入一种无害的病毒(携带编码调控细胞增殖的蛋白的基因),促进小鼠眼睛中Müller胶质细胞的分裂;两周后,尝试又一次基因转移——注入3个负责生成视杆细胞的关键基因。

结果证实,在这些携带基因的病毒的刺激下,Müller胶质细胞可以再生出类似于视杆细胞的细胞(结构和功能一样)。

随后,他们在失明小鼠(依然有视杆细胞和视锥细胞,但是缺乏确保这些感光细胞传递信号的两个关键基因)身上进行了同样的尝试。除了推动视杆细胞的3个基因,研究人员还加入了修正信号缺陷的基因。结果发现,治疗后的小鼠能够接收到视觉信号。这意味着,新生成的视杆细胞能够与视网膜神经节细胞互作传递信号。


图示为由Müller胶质细胞分化而来的视杆细胞(rod photoreceptors)。这些光感受器在结构上与真正的光感受器并没有区别,它们同样能够参与视觉信号传递。(图片来源:Bo Chen, Ph.D.)

下一步

在这项研究中,因为Müller胶质细胞数量有限,即便再生最多量的视杆细胞,其密度只有健康小鼠视网膜的0.2%,所以治疗后的小鼠虽然能够感知光线,但是并不能辨认出形状或事物。

不过这一研究已经解决了第一道难关。如果未来科学家们能够促使Müller胶质细胞再生出更多的感光细胞,或许这一疗法可以治疗恢复失明患者的视力。

责编:风铃

参考资料:

Congenital blindness reversed in mice

Eye regeneration technique lets blind mice see the light

所有文章仅代表作者观点,不代表本站立场。如若转载请联系原作者。
  • 2018/12/26
    让遗传性失明有药可医,有法可治。
  • 2018/11/05
    2018年10月25-26日,全球硬科技创新暨“一带一路”创新合作大会生物技术论坛在西安召开。美国加州大学圣地亚哥分校(UCSD)生命科学学院终身教授徐洋在会上作了题为《基因编辑在胚胎干细胞临床开发中的应用》的报告。会后,探索菌就当前干细胞领域的研究进展及衍生问题与徐洋教授进行了深入对话。
  • 2018/09/06
    随着“两票制”“注册人制度”“医保控费”等政策的推行,医疗器械相关企业正面临着怎样的变革?他们又将如何转型,以应对改革时代下的机遇和挑战?9月2日,在“医疗器械创新周”同期举办的2018医疗器械营销创新与渠道拓展高峰论坛现场,我们聆听了数十位一线大咖的声音。
查看更多
  • Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas

    In zebrafish, Müller glia (MG) are a source of retinal stem cells that can replenish damaged retinal neurons and restore vision1. In mammals, however, MG do not spontaneously re-enter the cell cycle to generate a population of stem or progenitor cells that differentiate into retinal neurons. Nevertheless, the regenerative machinery may exist in the mammalian retina, as retinal injury can stimulate MG proliferation followed by limited neurogenesis2,3,4,5,6,7. Therefore, there is still a fundamental question regarding whether MG-derived regeneration can be exploited to restore vision in mammalian retinas. Gene transfer of β-catenin stimulates MG proliferation in the absence of injury in mouse retinas8. Here we report that following gene transfer of β-catenin, cell-cycle-reactivated MG can be reprogrammed to generate rod photoreceptors by subsequent gene transfer of transcription factors essential for rod cell fate specification and determination. MG-derived rods restored visual responses in Gnat1rd17Gnat2cpfl3 double mutant mice, a model of congenital blindness9,10, throughout the visual pathway from the retina to the primary visual cortex. Together, our results provide evidence of vision restoration after de novo MG-derived genesis of rod photoreceptors in mammalian retinas.

    展开 收起
发表评论 我在frontend\modules\comment\widgets\views\文件夹下面 test