首次证实!衰老“关键分子”被发现,抑制它可延长寿命
2018/06/25
每个细胞和生物体迟早都会衰老,但为什么会这样呢?近日,来自德国癌症研究中心(DKFZ)的科学家们首次发现了一种蛋白质,它代表了衰老过程的一个中心转折点,控制着个体(从果蝇到人类)的生命。这一重要发现为开发针对年龄相关性疾病的疗法提供了新的可能性。


图片来源:FEBS Letters (https://doi.org/10.1002/1873-3468.13156)

6月13日,这一成果以“Enhanced expression of thioredoxin‐interacting‐protein regulates oxidative DNA damage and aging”为题发表在FEBS Letters 上。DKFZ的Peter H. Krammer和Karsten Gülow是论文的共同通讯作者。

氧化应激

氧化应激会导致细胞和整个生物体衰老。如果活性氧积累,就会对DNA造成损害,也会使细胞中的蛋白质分子和脂质发生变化。细胞最终会失去功能并死亡。随着时间的推移,组织受损,身体老化。

Krammer说:“自20世纪50年代以来,氧化应激或活性氧积累的理论就已经存在。但迄今为止,这个过程的细节仍不清楚。”

事实上,活性氧不仅仅会损害身体,它们对免疫系统中T细胞的激活也是至关重要的。在这项新研究中,Krammer和Gülow领导的团队鉴定出了一个关键的调节因子——被称为TXNIP(thioredoxin-interacting protein)的蛋白质。该蛋白负责将活性氧的数量从“对机体至关重要”转变为“对机体有害”(from vital to harmful),从而加速老化过程。


图片来源:Pixabay

关键分子——TXNIP

“机体处理有害活性氧的一种方式是通过被称为thioredoxin-1(TRX-1)的酶进行转化。TRX-1已被证明在保护DNA免受氧化应激损伤,以及延缓衰老中发挥了重要的作用。作为TRX-1的拮抗剂,TXNIP能够抑制TRX-1的活性,从而确保活性氧分子得以保留。”研究人员解释道。

那么,随着年龄的增长,体内是否会形成更多的TXNIP,从而破坏对抗氧化应激的保护机制呢?为了回答这一问题,科学家们首次将“来自55岁以上志愿者血液中的T细胞”和“来自20-25岁捐赠者血液中的T细胞”进行了比较。结果证实,较老的志愿者的细胞产生显著更多的TXNIP。此外,Krammer还在其他人类细胞和组织类型中观察到了相似的结果。

同时,研究人员还发现,随着年龄的增长,果蝇体内也会产生更多的TXNIP。为了测试TXNIP是否真的与衰老有关,他们培育出了比亲缘产生显著更多TXNIP的果蝇,以及TXNIP合成大大降低的果蝇。分析显示,产生更多TXNIP的果蝇平均寿命要短得多,而产生更少TXNIP的果蝇则具有更长的平均寿命。

重要意义

由于TRX-1和TXNIP在进化过程中高度保守,因此,它们在果蝇和人类中几乎没有什么不同。这就可以假定,两种蛋白质在果蝇和人类中发挥了相似的功能。

Krammer相信,TXNIP是衰老的关键调节因子。如果随着年龄的增长,机体产生更多的TXNIP,就意味着,TRX-1的保护功能将逐渐被“关闭”,进而导致更多的氧化应激,损伤细胞和组织,最终使它们死亡。

“尽管科学家们已经发现了数百个从某种程度上与衰老过程有关的基因,但仅靠关闭TXNIP就足以延缓衰老。这将使它成为干预衰老的有效候选靶点。”作者们总结道。

责编:风铃

参考资料:

Key molecule of aging discovered

所有文章仅代表作者观点,不代表本站立场。如若转载请联系原作者。
查看更多
  • Enhanced expression of thioredoxin‐interacting‐protein regulates oxidative DNA damage and aging

    The “free radical theory of aging” suggests that reactive oxygen species (ROS) are responsible for age‐related loss of cellular functions and, therefore, represent the main cause of aging. Redox regulation by thioredoxin‐1 (TRX) plays a crucial role in responses to oxidative stress. We show that thioredoxin‐interacting protein (TXNIP), a negative regulator of TRX, plays a major role in maintaining the redox status and, thereby, influences aging processes. This role of TXNIP is conserved from flies to humans. Age‐dependent upregulation of TXNIP results in decreased stress resistance to oxidative challenge in primary human cells and in Drosophila. Experimental overexpression of TXNIP in flies shortens lifespan due to elevated oxidative DNA damage, whereas downregulation of TXNIP enhances oxidative stress resistance and extends lifespan.

    展开 收起
发表评论 我在frontend\modules\comment\widgets\views\文件夹下面 test