Nature展现重磅黑科技!脑机接口让瘫痪猕猴再次行走
2016/11/11
近日,Nature杂志上发表了一项来自来自瑞士、德国、意大利、法国、中国、英国和美国的联合研究团队开发的一种无线大脑接口——它可以通过再现来自大脑的信号记录刺激腿部的电极,使脊髓损伤的猕猴能够行走。


如果你喜欢看《黑客帝国》或者《阿凡达》一类的科幻片,你一定对“脑机接口”这个概念不陌生。脑机接口就是指动物的脑或神经系统与外部设备间建立的直接连接通路。这项听上去未来感十足的“黑科技”在近年来成了研究热点。此前就有研究展示通过脑机接口用神经控制机械臂帮助瘫痪患者移动物体;使用大脑皮层记录的信号让瘫痪患者恢复手的运动能力;或者通过脑机接口让失去知觉的瘫痪患者在大脑中体验触觉。

近日,Nature杂志上发表了一项来自瑞士、德国、意大利、法国、中国、英国和美国的联合研究团队开发的一种无线大脑接口——它可以通过再现来自大脑的信号记录刺激腿部的电极,使脊髓损伤的猕猴能够行走。

脊髓损伤是一种较为严重的神经损伤疾病,该病常会导致创伤部位组织的感觉和运动功能部分或完全丧失,对患者的日常生活造成严重的影响。这项研究为脊髓损伤的临床研究开辟了新的道路,并为瘫痪患者提供了生物电治疗方案。

研究小组首先绘制了跑步机上行走的健康猕猴的电信号是如何从大脑发送到腿部肌肉的。然后在脊髓切断的猕猴身上再现这些信号。他们将微电极阵列植入于瘫痪的猕猴的大脑中,获取并解码与腿部运动相关的信号。这些信号被发送到位于低位脊柱的电脉冲发生装置,从而触发猕猴腿部肌肉运动。


图片来源:参考文献

虽然腿部运动的节奏不够完美,但是猕猴的脚没有拖曳并且运动的协调度足以支撑灵长动物的体重。目前,研究小组正试图更加精确地控制腿部肌肉,确保这些灵长动物不仅可以支撑自己的体重,也能够保持平衡、避免障碍。

不过,在人类中做同样的事会更加复杂。大脑解码过程困难得多。比如,在这项灵长动物研究中,研究人员将脊柱损伤前的电活动记录下来,在将其放回到损伤后的脊柱中来恢复运动功能。但是,这种方法对于已经脊柱损伤的患者并不适用。

此外,有科学家表示需要将其他影响到行走的因素考虑在内。比如,节奏与步态的协调是该实验未涉及的,而这由另一组不同的神经元所及控制。

研究人员已经在瑞士洛桑沃州大学中心医院开展临床实验,帮助瘫痪病人行走。已经有两位患者在低位脊柱植入了电脉冲发生器,不过与猕猴实验不同的是,这些患者的脑中并未植入微电极阵列,因此他们不能控制自己的运动。

备注:本文编译自Nature网站,原标题:“Brain implants allow paralysed monkeys to walk

所有文章仅代表作者观点,不代表本站立场。如若转载请联系原作者。
查看更多
  • A brain–spine interface alleviating gait deficits after spinal cord injury in primates

    Spinal cord injury disrupts the communication between the brain and the spinal circuits that orchestrate movement. To bypass the lesion, brain–computer interfaces1, 2, 3 have directly linked cortical activity to electrical stimulation of muscles, and have thus restored grasping abilities after hand paralysis1, 4. Theoretically, this strategy could also restore control over leg muscle activity for walking5. However, replicating the complex sequence of individual muscle activation patterns underlying natural and adaptive locomotor movements poses formidable conceptual and technological challenges6, 7. Recently, it was shown in rats that epidural electrical stimulation of the lumbar spinal cord can reproduce the natural activation of synergistic muscle groups producing locomotion8, 9, 10. Here we interface leg motor cortex activity with epidural electrical stimulation protocols to establish a brain–spine interface that alleviated gait deficits after a spinal cord injury in non-human primates. Rhesus monkeys (Macaca mulatta) were implanted with an intracortical microelectrode array in the leg area of the motor cortex and with a spinal cord stimulation system composed of a spatially selective epidural implant and a pulse generator with real-time triggering capabilities. We designed and implemented wireless control systems that linked online neural decoding of extension and flexion motor states with stimulation protocols promoting these movements. These systems allowed the monkeys to behave freely without any restrictions or constraining tethered electronics. After validation of the brain–spine interface in intact (uninjured) monkeys, we performed a unilateral corticospinal tract lesion at the thoracic level. As early as six days post-injury and without prior training of the monkeys, the brain–spine interface restored weight-bearing locomotion of the paralysed leg on a treadmill and overground. The implantable components integrated in the brain–spine interface have all been approved for investigational applications in similar human research, suggesting a practical translational pathway for proof-of-concept studies in people with spinal cord injury.

    展开 收起
发表评论 我在frontend\modules\comment\widgets\views\文件夹下面 test