两方战火升温!Cell卷入CRISPR“主人之争”,Jennifer Doudna这次很有态度
Eric Lander的文章发表后,一些批评者对此提出了激烈的反对意见。问题在于,Broad研究所作为共同专利权人,卷入了美国专利和商标局(USPTO)正在展开调查的一场知识产权战之中。并且Lander的Cell文章没有披露潜在的利益冲突。


生物学家们一直在打磨能够进行DNA编辑的工具,而CRISPR技术很快成为了其中最耀眼的明星。CRISPR体系包括一个细菌核酸酶(Cas)和一段与目标DNA匹配的引导RNA,能为细菌沉默入侵者 (比如病毒)遗传信息的关键部分。与其他基因编辑技术相比,CRISPR技术更易于操作扩展性也更强,因此迅速成为了科研领域的宠儿,为基因工程和生物医学领域带来了一场革命。

很少有发现能够像CRISPR那样在一夜之间改变整个领域。科学家们三年前才发现CRISPR能在活细胞中实现精确有效的基因组编辑。CRISPR/Cas免疫系统主要有三种类型,而这项研究使用的主要是完全依赖Cas9内切酶进行靶标和 剪切的II型CRISPR系统。自此以后,CRISPR技术就如风暴一般席卷了整个科研领域,现在正有数以千计的实验室在使用它。

CRISPR技术的应用范围非常广泛,比如建立人类遗传病和癌症的复杂动物模型、进行人类细胞全基因组筛选以鉴定生物学过程背后的基因、启动或关闭特定的基因,设计转基因植物等等。CRISPR改造人类生殖细胞的可能性更是引起了广泛的争议。

想必现在已经没有哪个分子生物学家还未听过CRISPR的大名。然而大部分人可能还不清楚这一革命到底是如何发生的。与过程相比,做科研的人似乎更注重结果。一旦某个事实被牢固地建立起来,背后的曲折路径就显得不那么重要了。


著名遗传学家Cell亮点文章:CRISPR英雄谱

著名遗传学家、美国科学院院士Eric S. Lander教授(麻省理工学院与哈佛大学Broad研究所主席兼主任)却不这么看。他认为,了解科研进展背后的人和事能让我们获益良多。对于迈入科研门槛不久的学生来说,对科学发现有一个真实的概念特别重要,不仅有重要的指导意义还能带来关键性的启发。

为此,Lander教授花几个月的时间完成了这篇文章,并将其发表在本期的Cell杂志上。他基于已 发表的研究论文、人物访谈和其他资料(甚至包括杂志的拒稿信),梳理了CRISPR二十年来的发展历程,并从中提取了具有参考价值的经验和教训。文章中介绍了十多位CRISPR英雄,也就是那些发现CRISPR系统、揭示其分子机制并将其改造为强大工具的科学家们。

CRISPR的发现:Francisco Mojica CRISPR


故事开始于风景优美的西班牙白色海岸(Costa Blanca)。在海滨城市Santa Pola长大的 Francisco Mojica,是美丽海岸和广阔盐碱滩的常客。当他在本地阿利坎特大学攻读博士的时 候,参加了对地中海富盐菌(Haloferax mediterranei)的研究。他在分析细菌DNA的时候,发现了一种此前未知的重复结构。

这位28岁的博士研究生被这种神秘的结构迷住了,在此后十年的职业生涯中一直致力于揭开这一谜团。Mojica很快发现类似的重复也存在于其他一些不同种类的细菌中。他意识到这样的结构可能在原核生物中具有重要的功能。他发表了一篇论文,报告了这类新的重复序列(Mojica et al., 1995)。

当Mojica在阿利坎特大学任职的时候,由于缺少启动资金和实验室空间,他主要通过生物信息学手段来研究这种奇怪的重复。Mojica最初将其命名为SRSR(short regularly spaced repeats),后来又将名字改为CRISPR(规律成簇的间隔短回文重复)。

到2000年,Mojica已经在二十种细菌中发现了CRISPR位点。在随后的两年中,研究者们不仅使这一数字翻了番,还明确了CRISPR位点的关键特性,包括紧邻的CRISPR-associated (cas)基因。然而CRISPR系统的功能仍然是未知的。

十多年来,RNAi一直是基因功研究领域的王者,然而新兴技术的涌现(尤其是CRISPR技术)正在逐渐瓦解RNAi的统治地位。日新月异的技术发展为生物学研究提供了越来越大的助力,也给研究者们带来了一个有些纠结的问题,“到底应该选择那一种技术呢”。Molecular Cell杂志推出的这篇文章对RNAi、TALEN和CRISPR这三大工具的核心技术进行了全面比较,并且为基因功能研究提供了一份实用指南。[文献可阅读Lander Cell全文]

文章引起巨大争议


Eric Lander

Eric Lander的文章发表后,一些批评者对此提出了激烈的反对意见。问题在于,Broad研究所作为共同专利权人,卷入了美国专利和商标局(USPTO)正在展开调查的一场知识产权战之中。并且Lander的Cell文章没有披露潜在的利益冲突。

加州大学伯克利分校的Jennifer Doudna与德国Helmholtz感染研究中心的Emmanuelle Charpentier一起,当前正与Broad研究所的张锋及同事们陷入一场专利纠纷中。1月17 日,Doudna 在PubMed Commons网站上发表评论称Lander的描述“与事实不符”。 Doudna指出,Lander并未核对针对她的实验室以及实验室与其他研究人员交往的描述,且在文章发表前也未征得她的同意。

在写给《科学家》(The Scientist)杂志的一份声明中,Lander说他确实“向Cell杂志透露了现实与可感知的冲突,”包括他的机构拥有的一些CRISPR专利及专利申请。Lander还说,他在12月中旬向Doudna发出了电子邮件,请求她核查将在他的观点文章中发布的材料。

Lander写道:“她确认了有关她的个人背景信息,但表示不想以任何方式评论有关CRISPR技术开发的历史陈述。在撰写这篇文章的过程中,我收到了世界各地十多名科学家提供的关于CRISPR开发的信息。令人遗憾地是,Doudna是其中唯一一个表示拒绝的。尽管如此,我完全尊重她的决定,没有分享她的观点。我也明白将会有不同的观点。”


Doudna告诉The Scientist,Lander确实在12月18日联系了她,但他只共享了文章的一部分。Doudna在一封电 子邮件中写道:“他拒绝与我一同分享许多有关我实验室研究的部分。在发表之前我从未看到过完整的文章,我有电子邮件通信证实这一点。Lander应该写出为他提供信息的其他科学家的名字。”

任职于哈佛大学和Broad研究所,一直与张锋和其他研究人员合作开展CRISPR研究的George Church是其中的一位科学家。此前Church曾对外表达,世人不应CRISPR技术仅归功于张锋等三人,他也是其中的重要贡献者之一。Church在给The Scientist的一封电 子邮件中写道:“Eric Lander在12月14日问了我一些非常专业的问题,我提供了事实核查。他在1月13日发给我一份预印件。我立即寄给他一份有关事实错误的清单,但其中没有一个错误被纠正过来。”

PubPeer网站在这篇论文发布后不久便出现了一些匿名评论。一位用户写道:“这非常的可疑。在这场经常被称作为生物技术史上最大的专利战中,我们是中立的一方。在这场争斗中,Cell居然允许卷入专利战中的一家机构的领导者——Eric Lander决定谁应该突显为这些研究发现的英雄。”另一位用户则写道:“这篇文章在毫不掩饰地为张锋宣称所有权,而Broad研究所冠冕堂皇地从中获益。”

加州大学伯克利分校Michael Eisen在他的网站上谈论CRISPR和相关的专利纠纷时透露了他的潜在冲突,在推特(Twitter)上Eisen提出了针对这篇文章的几点反对意见。他在其中写道:“Lander最具破坏性的错误描述 是,他所有的‘#CRISPR英雄’都是项目负责人(PIs)——那学生和博士后呢?”

在发给The Scientist的一份声明中,Cell出版社发言人Joseph Caputo重申,Lander提供了一份利益冲突(COI)声明,尽管Lander声明了有机构冲突,但没有声明有个人的经济利益冲突。Cell出版社的COI政策不适 用于机构冲突,因此Cell没有发表声明。Caputo在一封电子邮件中写道:“我们当前正在评估我们的COI政 策,以确定我们是否应该进一步扩展它纳入机构利益冲突。我无法对是否会改变Lander的文章做出评论。”

所有文章仅代表作者观点,不代表本站立场。如若转载请联系原作者。
查看更多
  • The Heroes of CRISPR

    It’s hard to recall a revolution that has swept biology more swiftly than CRISPR. Just 3 years ago, scientists reported that the CRISPR system—an adaptive immune system used by microbes to defend themselves against invading viruses by recording and targeting their DNA sequences—could be repurposed into a simple and reliable technique for editing, in living cells, the genomes of mammals and other organisms. CRISPR was soon adapted for a vast range of applications—creating complex animal models of human-inherited diseases and cancers; performing genome-wide screens in human cells to pinpoint the genes underlying biological processes; turning specific genes on or off; and genetically modifying plants—and is being used in thousands of labs worldwide. The prospect that CRISPR might be used to modify the human germline has stimulated international debate.

    展开 收起
发表评论 我在frontend\modules\comment\widgets\views\文件夹下面 test