Nature子刊:将DNA测序精度提高1000倍
生物通 · 2015/09/23
来自瑞士洛桑联邦理工学院(EPFL)的科学家们开发出了一种方法,将DNA测序的精度提高了1000倍。利用纳米孔来读取单个核苷酸,这一方法为更好及更廉价的DNA测序铺平了道路。


来自瑞士洛桑联邦理工学院(EPFL)的科学家们开发出了一种方法,将DNA测序的精度提高了1000倍。利用纳米孔来读取单个核苷酸,这一方法为更好及更廉价的DNA测序铺平了道路。

DNA测序是一种能够确定DNA分子准确序列的技术。作为当前最重要的生物及医学工具之一,它构成了基因组分析的核心。通过辨认基因的确切组成,科学家们可以检测出突变,甚至识别出不同的生物体。

一种强大的DNA测序方法利用了微小的纳米孔来读取通过的DNA。然而,由于DNA往往以极快的速度通过纳米孔,“纳米孔测序”错误率非常的高。EPFL的科学家们现在发现了一种粘性液体可以让这一过程的速度减慢1000倍,大大提高了这一方法的分辨率和精度。这一突破性成果发布在《自然纳米技术》(Nature Nanotechnology)杂志上。

读取速度过快

DNA是由4种不同的重复构件组成的长分子。这些称作为“核苷酸”的构件按各种组合串在一起,其中包含着了细胞的遗传信息,如基因。基本上,这4种核苷酸构成了所有的遗传语言。DNA测序就是通过设法译解这一语言,将其分解为单个的碱基。

了解SMRT测序技术的最新进展

在纳米孔测序过程中,DNA就像线穿过针一样地通过膜中的微小孔道。这一孔道中包含有电流,当每个核苷酸通过这一孔道时,它们会以各自的方式阻止电流,由此可以识别出这些核苷酸。尽管这种方法很强大,但它却受到高速度的困扰:DNA通过孔道的速度过快,使得无法以足够的精度来读取它。

放慢速度

EPFL生物工程研究所Aleksandra Radenovic实验室现在利用一种粘性液体将DNA通过的速度减慢了2-3个数量级,攻克了这一问题。由此,将测序精度提高至单核苷酸。

这项研究是由冯建东(Jiandong Feng,音译)、刘科(Ke Liu,音译)与Andras Kis实验室的同事们共同完成。两位研究人员开发出了一种由二硫化钼(MoS2)构成的、厚度仅为0.7 nm的膜。研究小组随后在膜上制造出了大约3 nm宽的纳米孔。

接下来是将DNA溶解在包含带电离子的粘液中,研究人员可以微调粘液的分子结构来改变它的“粘度梯度”。这一液体属于一种“室温离子液体”,其实际上是一种盐溶液。EPFL的科学家利用了液体的可调性,将其达到了一种足以减慢DNA的理想粘度梯度。

最后,研究小组通过让溶解在液体中的已知核苷酸多次通过纳米孔测试了他们的系统。这使得研究人员能够获得每个核苷酸的平均读值,然后利用读值来鉴别出它们。

尽管仍处于测试阶段,研究小组打算继续他们的研究工作来测试完整的DNA链。冯建东说:“我们正在寻找机会商业化这一技术。”

科学家们预测,利用高端电子产品及控制液体的粘度梯度还可以进一步优化这一系统。通过结合离子液体及二硫化钼薄膜纳米孔,他们希望构建出能获得更好输出结果的、更廉价的DNA测序平台。

这项工作提供了一种创新的方法改进当前最好的一种DNA测序技术。“在未来的数年里,测序技术将肯定会从研究转向临床。因此,我们需要快速及价格实惠的DNA测序——纳米孔技术可以实现这一目标,”Aleksandra Radenovic说。

所有文章仅代表作者观点,不代表本站立场。如若转载请联系原作者。
  • 2017/12/06
    宣泽生物在SCI期刊《Current Opinion in Biotechnology》发文——通过改造蛋白纳米孔用于测序、化学或蛋白检测以及疾病诊断。
  • 2017/07/18
    目前,英国每年有超过35万人被诊断患有癌症,每年约有16.3万人因此死亡。萨利表示,是时候结束“诊断性恶性肿瘤”了,这类患者一般要咨询5位以上医生,在确诊前平均要等上4年。
  • 2016/04/30
    近期,华东理工大学化学与分子工程学院的龙亿涛科研团队在生物纳米孔超灵敏单核苷酸分辨领域取得独创性突破,该研究成果以华东理工大学作为独立研究单位,于4月25日在《Nature Nanotechnology》(自然-纳米技术)上发表。
查看更多
  • Identification of single nucleotides in MoS2 nanopores

    The size of the sensing region in solid-state nanopores is determined by the size of the pore and the thickness of the pore membrane, so ultrathin membranes such as graphene and single-layer molybdenum disulphide could potentially offer the necessary spatial resolution for nanopore DNA sequencing. However, the fast translocation speeds (3,000–50,000 nt ms–1) of DNA molecules moving across such membranes limit their usability. Here, we show that a viscosity gradient system based on room-temperature ionic liquids can be used to control the dynamics of DNA translocation through MoS2 nanopores. The approach can be used to statistically detect all four types of nucleotide, which are identified according to current signatures recorded during their transient residence in the narrow orifice of the atomically thin MoS2 nanopore. Our technique, which exploits the high viscosity of room-temperature ionic liquids, provides optimal single nucleotide translocation speeds for DNA sequencing, while maintaining a signal-to-noise ratio higher than 10.

    展开 收起
发表评论 我在frontend\modules\comment\widgets\views\文件夹下面 test