JMIR:使用手机时间越长,患抑郁症风险越高
2015/07/25
西北大学费因伯格医学院进行了一项研究: 结合使用智能手机的时间和GPS定位结果两大数据,能用于诊断抑郁症及患病程度。患有抑郁症的人平均每天花68分钟玩手机,而健康的人每天只花17分钟。同时,GPS显示大部分时间宅家里或者每天的行程不定也可能是抑郁症的表现。


轻度抑郁症患者可以通过强颜欢笑和善意的谎言向朋友和同事隐藏病情。但是患者使用的智能手机却能暴露——它记录下使用时间和日常地理位置,从数据中泄露你潜心隐藏的秘密。

西北大学费因伯格医学院对此进行了研究。研究人员对28位成年人(20名女性,8名男性,平均年龄29岁)进行实时追踪,通过手机传感器APP采集手机使用时间和每5分钟定位一次的地理位置。同时作为对照,试验对象都完成一份以是否有抑郁症状如悲伤、睡眠障碍等为问题的调查问卷(PHQ-9)。

两周的试验期,研究人员对数据进行分析,发现:

患有抑郁症的人平均每天花68分钟玩手机,而健康的人每天只花17分钟。

GPS显示大部分时间宅家里或者每天的行程不定也可能是抑郁症的表现。

通过手机检测到的抑郁病患的准确度达87%。

研究人员David Mohr 对这种现象进行分析:人们可能为逃避日常烦恼、生活困难或者繁杂的人际交往而沉迷于手机。这是抑郁症里面的“逃避行为”。当人们情绪低落时,他们倾向于回避,从而没有动力和激情出门或工作。

事实上,智能手机数据诊断抑郁症比PHQ-9问卷更可靠,因为问卷调查会受主观意识影响。Mohr强调:“这项研究的意义在于:如果一个人患有抑郁症,但是表现出来的症状不足以形成问题严重性,借助手机这种客观评估,能够诊断抑郁症患者患病程度。”

借助手机APP,当事人不需要刻意干预,就能够客观地被诊断。未来,这种诊断指标可能会推广成对抑郁症风险诊断的常规步骤,从而让医疗工作者及时的对患者治疗。长远来看,这款APP还能被改造开发,及时提醒抑郁症患者,鼓励他们远离“低头族”,勇敢迈出步伐,积极参加活动、与人沟通。

所有文章仅代表作者观点,不代表本站立场。如若转载请联系原作者。
查看更多
  • Mobile Phone Sensor Correlates of Depressive Symptom Severity in Daily-Life Behavior: An Exploratory Study

    Background: Depression is a common, burdensome, often recurring mental health disorder that frequently goes undetected and untreated. Mobile phones are ubiquitous and have an increasingly large complement of sensors that can potentially be useful in monitoring behavioral patterns that might be indicative of depressive symptoms. Objective: The objective of this study was to explore the detection of daily-life behavioral markers using mobile phone global positioning systems (GPS) and usage sensors, and their use in identifying depressive symptom severity. Methods: A total of 40 adult participants were recruited from the general community to carry a mobile phone with a sensor data acquisition app (Purple Robot) for 2 weeks. Of these participants, 28 had sufficient sensor data received to conduct analysis. At the beginning of the 2-week period, participants completed a self-reported depression survey (PHQ-9). Behavioral features were developed and extracted from GPS location and phone usage data. Results: A number of features from GPS data were related to depressive symptom severity, including circadian movement (regularity in 24-hour rhythm; r=-.63, P=.005), normalized entropy (mobility between favorite locations; r=-.58, P=.012), and location variance (GPS mobility independent of location; r=-.58, P=.012). Phone usage features, usage duration, and usage frequency were also correlated (r=.54, P=.011, and r=.52, P=.015, respectively). Using the normalized entropy feature and a classifier that distinguished participants with depressive symptoms (PHQ-9 score ≥5) from those without (PHQ-9 score <5), we achieved an accuracy of 86.5%. Furthermore, a regression model that used the same feature to estimate the participants’ PHQ-9 scores obtained an average error of 23.5%. Conclusions: Features extracted from mobile phone sensor data, including GPS and phone usage, provided behavioral markers that were strongly related to depressive symptom severity. While these findings must be replicated in a larger study among participants with confirmed clinical symptoms, they suggest that phone sensors offer numerous clinical opportunities, including continuous monitoring of at-risk populations with little patient burden and interventions that can provide just-in-time outreach.

    展开 收起
发表评论 我在frontend\modules\comment\widgets\views\文件夹下面 test