Nature:代谢让干细胞永葆青春
生物通/叶予 · 2014/12/11
近日,发表在《自然》杂志上的一项研究中,Rockefeller大学和Memorial Sloan Kettering癌症中心的科学家们发现,干细胞能够通过调整自己的代谢,增强自己的再生能力,避免分化成为特定的细胞类型。


早期胚胎中的干细胞拥有无限的潜力,它们能够成为任何类型的细胞,人们一直希望利用这一点来治疗疾病和修复创伤。怎样才能将干细胞稳定在青春永驻的状态下呢?正确的环境可以帮助人们做到这一点,就像彼得.潘德的永无岛(Neverland)那样。

Rockefeller大学和Memorial Sloan Kettering癌症中心的科学家们发现,干细胞能够通过调整自己的代谢,增强自己的再生能力,避免分化成为特定的细胞类型。

这项发表在本期Nature杂志上的研究,将细胞代谢与甲基化修饰关联了起来。研究显示,干细胞能利用代谢产物,促进去甲基化,让整个基因组保持开放,保留自己的分化能力。

“所有负责DNA和染色质修饰的酶都要用到细胞的代谢产物。不过人们之前并不清楚,发育和分化过程的代谢调整对基因表达有何影响,”领导这项研究的C. David Allis教授说。“我们发现,使用什么营养物质,怎样使用营养物质,都会改变干细胞的染色质景观和基因表达,进而影响干细胞的命运。”

表观遗传学修饰不会影响基因序列,而是通过改变DNA包装决定它是否开放进行表达。甲基化一般会沉默基因组的相应区域。干细胞为了保留分化能力需要基因组整个开放,因此甲基化必需受到控制。这种表观遗传学标签本身就是代谢产物,此外代谢产物也参与了去甲基化过程。

与含有牛血清的传统培养基相比,小鼠的胚胎干细胞在2i培养基中能更好的自我更新。这篇文章的两位第一作者Bryce Carey和Lydia Finley,对这些细胞的代谢情况进行了比较。

他们首次发现2i细胞不需要谷氨酰胺。谷氨酰胺是绝大多数细胞都需要的氨基酸,用来生成代谢产物α-酮戊二酸(alpha-ketoglutarate)。α-酮戊二酸是一系列代谢反应(三羧酸循环)的重要参与者,它也和染色质上的甲基化调控有关。

研究显示,就算没有谷氨酰胺,2i细胞也能生成大量α-酮戊二酸。更令人惊讶的是,2i细胞调整了自己的代谢,减少了三羧酸循环中的α-酮戊二酸分解。一般来说,α-酮戊二酸会转变为琥珀酸盐供给细胞生长。代谢调整之后,更多的α-酮戊二酸开始为去甲基化提供能量。

“提供更多起始原料和去除反应产物,能够推动化学反应持续进行。因此我们认为,增加α-酮戊二酸和减少琥珀酸盐能促进去甲基化,有助于干细胞再生,”Finley说。研究人员将α-酮戊二酸添加到传统培养基培养的干细胞中,结果它们的形态和行为变得更接近2i细胞。研究还显示,添加α-酮戊二酸或关闭去甲基化酶,能够改变特定干细胞基因的活性。

“发现代谢和干细胞命运的关联,有助于人们进一步认识发育和再生,更好的利用干细胞治疗相关疾病,比如修复脊髓损伤或治疗一型糖尿病。这项研究也为理解癌症提供了一个新的角度,”Allis说。

所有文章仅代表作者观点,不代表本站立场。如若转载请联系原作者。
查看更多
  • Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells

    The role of cellular metabolism in regulating cell proliferation and differentiation remains poorly understood1. For example, most mammalian cells cannot proliferate without exogenous glutamine supplementation even though glutamine is a non-essential amino acid1, 2. Here we show that mouse embryonic stem (ES) cells grown under conditions that maintain naive pluripotency3 are capable of proliferation in the absence of exogenous glutamine. Despite this, ES cells consume high levels of exogenous glutamine when the metabolite is available. In comparison to more differentiated cells, naive ES cells utilize both glucose and glutamine catabolism to maintain a high level of intracellular α-ketoglutarate (αKG). Consequently, naive ES cells exhibit an elevated αKG to succinate ratio that promotes histone/DNA demethylation and maintains pluripotency. Direct manipulation of the intracellular αKG/succinate ratio is sufficient to regulate multiple chromatin modifications, including H3K27me3 and ten-eleven translocation (Tet)-dependent DNA demethylation, which contribute to the regulation of pluripotency-associated gene expression. In vitro, supplementation with cell-permeable αKG directly supports ES-cell self-renewal while cell-permeable succinate promotes differentiation. This work reveals that intracellular αKG/succinate levels can contribute to the maintenance of cellular identity and have a mechanistic role in the transcriptional and epigenetic state of stem cells.

    展开 收起
发表评论 我在frontend\modules\comment\widgets\views\文件夹下面 test