科学家发现细胞老化开关:或可实现器官再造
参考消息 · 2014/09/24
近日,美国索尔克生物研究所科研人员发现了细胞内一个对健康老化至关重要的“开关”。这个“开关”可以促进健康细胞分裂和生长,比如,即便在衰老阶段也能产生新的肺或肝组织。科研人员在9月19日的《基因与发育》杂志上报告称,他们发现端粒酶可以被关闭。


英国物理科学新闻网站9月20日发表题为《科学家们发现了控制细胞衰老的开关》的报道称,美国索尔克生物研究所科研人员发现了细胞内一个对健康老化至关重要的“开关”。这个“开关”可以促进健康细胞分裂和生长,比如,即便在衰老阶段也能产生新的肺或肝组织。

在人体内,新分裂的细胞不断补充着肺、皮肤、肝脏及其他器官。但大多数人体细胞不能无限期地分裂下去——每一次分裂后,染色体末端的细胞计时器就会缩短。当这种名为端粒的计时器变得极短时,细胞就不再分裂,导致器官和组织退化,这种现象经常发生在衰老阶段。但存在一种绕过这种倒计时现象的方法:一些细胞会产生一种端粒酶,这种酶可以修复端粒,并让细胞无限期地分裂下去。

索尔克生物研究所科研人员9月19日在《基因与发育》杂志上发表研究报告称,他们发现端粒酶可以被关闭。

该研究报告资深作者维基•伦德布拉德教授说:“早前的研究认为端粒酶一旦聚合,在需要时可随时利用。我们意外地发现端粒酶有一个‘关闭’开关,这个开关可以让它分解。”

理解如何操纵这一“关闭”开关——进而延缓端粒变短的过程,可以为治疗衰老性疾病带来新方法,比如,在生命晚期再造重要的人体器官。

伦德布拉德与报告第一作者、研究生蒂莫西•图西对酿酒酵母展开了研究。早前,伦德布拉德的团队利用这种简单的单细胞生物体揭示了端粒酶的大量信息,并为在人体细胞中寻找类似结果奠定基础。

图西说:“我们本希望能够研究端粒酶复合体的每一种成分,但事实上这并不是一项简单的任务。”图西制定了一套方法,可以让他以极高的分辨率观察处于细胞生长和分裂期的每一种成分。

每当细胞分裂时,细胞的整个基因组就会被复制。当基因组进行复制时,图西发现端粒酶在准备组合成一个复合体时,会缺失一个重要的分子亚基。但在基因组全部复制后,这个缺失的亚基会加入它的同伴中,形成一个完整的、充分活跃的端粒酶复合体。在此基础上,端粒酶可以补充不断磨损的染色体末端,并确保健康的细胞分裂。

但令人意外的是,图西和伦德布拉德发现在端粒酶复合体充分组合后,它会迅速分解形成一个非活跃的“分解”复合体——事实上就是将开关调至“关闭”状态。他们推测这种解体过程可以提供一种方式,让端粒酶在细胞内保持极低的浓度。尽管正常细胞内不断磨损的端粒酶会导致衰老,但癌症细胞却依赖提高端粒酶浓度,确保无节制的细胞增长。图西和伦德布拉德发现的这个“关闭”开关可能有助于让端粒酶的活跃度低于这一限度。

所有文章仅代表作者观点,不代表本站立场。如若转载请联系原作者。
查看更多
  • Regulated assembly and disassembly of the yeast telomerase quaternary complex

    The enzyme telomerase, which elongates chromosome termini, is a critical factor in determining long-term cellular proliferation and tissue renewal. Hence, even small differences in telomerase levels can have substantial consequences for human health. In budding yeast, telomerase consists of the catalytic Est2 protein and two regulatory subunits (Est1 and Est3) in association with the TLC1 RNA, with each of the four subunits essential for in vivo telomerase function. We show here that a hierarchy of assembly and disassembly results in limiting amounts of the quaternary complex late in the cell cycle, following completion of DNA replication. The assembly pathway, which is driven by interaction of the Est3 telomerase subunit with a previously formed Est1–TLC1–Est2 preassembly complex, is highly regulated, involving Est3-binding sites on both Est2 and Est1 as well as an interface on Est3 itself that functions as a toggle switch. Telomerase subsequently disassembles by a mechanistically distinct pathway due to dissociation of the catalytic subunit from the complex in every cell cycle. The balance between the assembly and disassembly pathways, which dictate the levels of the active holoenzyme in the cell, reveals a novel mechanism by which telomerase (and hence telomere homeostasis) is regulated.

    展开 收起
发表评论 我在frontend\modules\comment\widgets\views\文件夹下面 test