做实验,得iPhone!
安诺医学转录组,让科研与临床更近一步
第六届胶原蛋白行业论坛会议通知

PNAS:张启发课题组成功克隆水稻光敏感雄性不育基因

2012/02/02 来源:中国新闻网
分享: 
导读
华中农业大学1日公布,经25年不懈攻关,中国科学院院士张启发课题组成功克隆控制水稻光敏感核不育基因。

华中农业大学1日公布,经25年不懈攻关,中国科学院院士张启发课题组成功克隆控制水稻光敏感核不育基因。

据了解,光敏感雄性核不育水稻农垦58S于1973年在湖北沔阳(今仙桃)发现,被认为是“国宝级”遗传资源。1987年启动的中国国家“863”计划,将利用光敏感核不育培育“两系”杂交稻作为主要内容之一列入生物技术领域。从1987年开始,华中农业大学的张启发课题组就一直致力于克隆控制水稻光敏感核不育的基因。

张启发院士称,光敏感雄性核不育水稻具有在长日照条件下不育,短日照条件下可育的育性转换特性。研究发现,控制水稻光敏感核不育的基因pms3是一个长链非编码RNA,该品种水稻与正常水稻品种在pms3区间存在一个碱基的突变。该基因表达受光周期调控,在长日条件下,pms3基因的正常表达对花粉发育至关重要。

张启发介绍说,光敏感核不育水稻杂交体系被称为“两系”杂交稻。与传统“三系”杂交稻相比,“两系”杂交稻简化了杂交育种和制种程序,降低了种子成本,且自由配种,能充分发挥杂种优势。pms3基因的克隆和功能分析的研究成果,可以直接应用于水稻“两系”不育系的培育,促进作物杂种优势利用研究的发展。

他还指出,生物基因组DNA序列分为编码和非编码序列。长期以来研究主要集中在编码序列,近年来发现非编码序列也发挥重要功能,但目前研究较多的是小分子非编码RNA,对长链非编码RNA研究还刚开始。pms3基因还是水稻中第一发现并进行了功能研究的长链非编码RNA,这为长链非编码RNA的功能研究开辟了新领域。

近日,《美国科学院院刊》发表了中国科学家成功克隆出pms3基因这一成果,该文第一作者为华中农业大学丁寄花博士。


A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice

Jihua Ding, Qing Lu, Yidan Ouyang, Hailiang Mao, Pingbo Zhang, Jialing Yao, Caiguo Xu, Xianghua Li, Jinghua Xiao, and Qifa Zhang

Hybrid rice has greatly contributed to the global increase of rice productivity. A major component that facilitated the development of hybrids was a mutant showing photoperiod-sensitive male sterility (PSMS) with its fertility regulated by day length. Transcriptome studies have shown that large portions of the eukaryotic genomic sequences are transcribed to long noncoding RNAs (lncRNAs). However, the potential roles for only a few lncRNAs have been brought to light at present. Thus, great efforts have to be invested to understand the biological functions of lncRNAs. Here we show that a lncRNA of 1,236 bases in length, referred to as long-day–specific male-fertility–associated RNA (LDMAR), regulates PSMS in rice. We found that sufficient amount of the LDMAR transcript is required for normal pollen development of plants grown under long-day conditions. A spontaneous mutation causing a single nucleotide polymorphism (SNP) between the wild-type and mutant altered the secondary structure of LDMAR. This change brought about increased methylation in the putative promoter region of LDMAR, which reduced the transcription of LDMAR specifically under long-day conditions, resulting in premature programmed cell death (PCD) in developing anthers, thus causing PSMS. Thus, a lncRNA could directly exert a major effect on a trait like a structure gene, and a SNP could alter the function of a lncRNA similar to amino acid substitution in structural genes. Molecular elucidating of PSMS has important implications for understanding molecular mechanisms of photoperiod regulation of many biological processes and also for developing male sterile germplasms for hybrid crop breeding.

文献链接:http://www.pnas.org/content/early/2012/01/27/1121374109.abstract?sid=32c71c99-df86-435a-986e-2d29d2ff364b

本网站所有注明“来源:生物探索”的文字、图片和音视频资料,版权均属于生物探索所有,其他平台转载需得到授权。本网所有转载文章系出于传递更多信息之目的,且明确注明来源和作者,不希望被转载的媒体或个人可与我们联系(editor@biodiscover.com),我们将立即进行删除处理。所有文章仅代表作者观点,不代表本站立场。